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A method for coronary arterial dynamics computation with medical-image-based time-
dependent anatomical models was introduced in [1]. The method has two components. The
first one is element-based zero-stress (ZS) state estimation [2], which is an alternative to
prestress calculation. The second one is a “mixed ZS state” approach [1], where the ZS states
for different elements in the structural mechanics mesh are estimated with reference
configurations based on medical images coming from different instants within the cardiac
cycle. In [1], a curve-extraction technique [3] was used in obtaining the time-dependent
anatomical model from the medical images. The curve-extraction technique is based on
minimizing the strain energy for a curved-beam representation of the artery, and from that the
arterial model is constructed by associating time-averaged cross-sections to the points along
the curve. Here we introduce a new method for arterial dynamics computation with medical-
image-based time-dependent anatomical models. We use a surface-extraction technique for
obtaining the time-dependent anatomical model from the medical images. In this technique,
the arterial surface geometry is extracted from the medical image by using a NURBS
representation of the extracted surface, and the surfaces associated with different instants of
the cardiac cycle all have a common parametric space. At each instant, the spatial control
mesh is created by least-squares minimization of the difference between the NURBS
representation of the surface and the surface coming from the medical image (see Figure 1).
The strain-energy minimization is for the arterial volume, with the arterial wall thickness
treated as a dependent parameter from the material incompressibility, and the resulting
equations are solved over the arterial surface. We apply the method to a human aorta, with 20
medical images in the cardiac cycle.
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Figure 1. Surface extraction at an instant during the cardiac cycle. The spatial control mesh
for the extracted surface is created by least-squares minimization of the difference between
the NURBS representation of the surface and the surface coming from the medical image. The
colored surface represents the control mesh prior to (left) and after (right) the least-squares

projection. The surfaces associated with different instants of the cardiac cycle all have a

common parametric space.
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